tioned between 50% aqueous $\mathrm{EtOH}(250 \mathrm{ml})$ and diethyl ether (500 ml) and the residue from the ether extract subjected to column chromatography on silica using hexane and EtOAchexane mixtures as eluants. Fractions containing (III) were concentrated in vacuo and the compound was crystallized from EtOAc-hexane as its EtOAc solvate: m.p. 521-523 K; $[\alpha]_{D}-11^{\circ}\left(c \quad 1.09, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} m / z: 847.3762\left[(M+1)^{+}\right.$, $\mathrm{C}_{43} \mathrm{H}_{59} \mathrm{O}_{17}$ requires 847.3740]. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data were in accord with those previously reported (Halsall et al., 1977). Mass spectra were obtained using a Kratos MS50TS spectrometer in the +FAB mode with a glycerol matrix. NMR spectra were recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on a Bruker AC 360 spectrometer.

Crystal data

$\mathrm{C}_{43} \mathrm{H}_{58} \mathrm{O}_{17} .0 .355 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=878.17$
Trigonal
$P 3_{1} 2_{1}$
$a=11.0341$ (8) \AA
$c=62.874(9) \AA$
$V=6629.4(12) \AA^{3}$
$Z=6$
$D_{x}=1.320 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 four-circle diffractometer equipped with an Oxford Cryosystems low-temperature device (Cosier \& Glazer, 1986)
ω scans with learnt-profile method (Clegg, 1981)
Absorption correction: by integration (see below) $T_{\text {min }}=0.727, T_{\text {max }}=0.920$
5589 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.075$
$w R\left(F^{2}\right)=0.210$
$S=1.043$
4548 reflections
638 parameters
H atoms: see below

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1102 P)^{2}\right. \\
&+12.5558 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.059
\end{aligned}
$$

$\mathrm{Cu} K \alpha$ radiation

$\lambda=1.54184 \AA$
Cell parameters from 59 reflections
$\theta=20-22^{\circ}$
$\mu=0.852 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Tablet
$0.40 \times 0.40 \times 0.10 \mathrm{~mm}$
Colourless

4548 independent reflections 3746 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.066$
$\theta_{\text {max }}=60.09^{\circ}$
$h=-9 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-33 \rightarrow 70$
3 standard reflections
frequency: 120 min
intensity decay: $<3 \%$

Data collection: DIF4 (Stoe \& Cie, 1990a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1990b). Program(s) used to solve structure: SHELX97 (Sheldrick, 1997). Program(s) used to refine structure: SHELX97. Molecular graphics: SHELXTL (Sheldrick, 1994). Software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1227). Services for accessing these data are described at the back of the journal.

References

Arene, E. O., Bevan, C. W. L., Taylor, D. A. H. \& Wragg, K. (1966). J. Chem. Soc. Chem. Commun. pp. 627-628.

Baxter, R. L. \& Ziegler, M. F. (1994). Bioorg. Biomed. Lett. 4, 26492652.

Clegg, W. (1981). Acta Cryst. A37, 22-28.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19. 105-107.
Evans, F. J. \& Taylor, S. E. (1983). Fortsch. Chem. Org. Naturst. 44, 73-87.
Flack, H. D. (1983). Acta Cryst. A39. 876-881.
Halsall, T. G.. Wragg, K., Connolly. J. D.. McLellan, M. A., Bredell, L. D. \& Taylor, D. A. H. (1977). J. Chem. Res. (M), pp. 1727-1733.

Harrison, H. R., Hodder, O. J. R., Bevan, C. W. L., Taylor, D. A. H. \& Halsall, T. G. (1970). J. Chem. Soc. Chem. Commun. pp. 1388-1389.
Sheldrick, G. M. (1994). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELX97. Program for the Solution and Refinement of Crystal Structures. University of Göttingen. Germany.
Stoe \& Cie (1990a). DIF4. Diffractometer Control Program. Version 7.09/DOS. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1990b). REDU4. Data Reduction Program. Version 7.03/DOS. Stoe \& Cie. Darmstadt, Germany.

Stoe \& Cie (1997). X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Taylor. D. A. H. (1974). J. Chem. Soc. Perkin Trans. pp. 437-441.
Taylor, D. A. H. \& Wragg, K. (1967). J. Chem. Soc. Chem. Commun. pp. 81-83.

Acta Cryst. (1998). C54, 1184-1186

ortho-(1-Naphthoyl)benzoic Acid

Roger E. Gerkin
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA. E-mail: gerkin@chemistry: ohio-state.edu

(Received 12 January 1998; accepted 16 February 1998)

Abstract

The title acid, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{3}$, crystallized in the centrosymmetric space group $\mathrm{C} 2 / \mathrm{c}$ and exhibits carboxyl group hydrogen bonding of the cyclic dimer type about a center of symmetry. The $\mathrm{O}_{\text {donor }}-\mathrm{O}_{\text {acceppor }}$ distance in the hydrogen bond is 2.692 (2) A. In addition, seven C-H groups and the three O atoms in the molecule are involved in significantly attractive $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions

with 11 neighbors, forming a three-dimensional network. The carboxylic H atom is ordered, as are the carboxylic O atoms.

Comment

This study of ortho-(1-naphthoyl)benzoic acid, (I), is one of a continuing series on hydrogen bonding in aromatic carboxylic acids. The refined molecule and the numbering scheme are shown in Fig. 1. The hydrogen bonding is of the cyclic dimer type about a center of symmetry. Geometric details of the hydrogen bonding are given in Table 2, and show that the carboxylic H atom is ordered. In terms of graph-set analysis (Bernstein et al., 1995), the first-level graph set is $R_{2}^{2}(8)$ and there are no higher-level graphs. This hydrogenbonding pattern, with non-involvement of the keto oxygen atom O3, is the most commonly observed pattern in simple keto-carboxylic acids (Cote et al., 1996).

(I)

As is not surprising in view of the excess of potential acceptors over O-H donors, 26 significantly attractive intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions [according to the criteria of Taylor \& Kennard (1982), namely, $\mathrm{C}_{\text {donor }} \cdots \mathrm{O}_{\text {acceptor }}$ distance up to $4 \AA$ and $\mathrm{C}_{\text {donor }}-\mathrm{H}-$ $\mathrm{O}_{\text {acceptor }}$ angle of 90° and greater] occur for each molecule in this structure. These interactions link a molecule to 11 neighbors, forming a three-dimensional network. In addition, there are four significant intramolecular C $\mathrm{H} \cdots \mathrm{O}$ interactions. Geometric details of the strongest intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions [those having $\mathrm{H} \cdots \mathrm{O}_{\text {acceppor }}$ distances less than the sum of the corresponding Bondi (1964) van der Waals radii] are given in Table 2; a complete tabulation from the usual donor viewpoint is included in the deposited material.

Fig. 1. ORTEPII (Johnson, 1976) plot of (I), showing the molecular numbering scheme. Displacement ellipsoids are drawn at 50% probability for all atoms except H, for which they have been set artificially small.

The most significant aspects of the molecular geometry are perhaps the values of the dihedral angles between, variously, the benzene core plane, the carboxyl group plane and the naphthyl group plane. The average deviation of the benzene core atoms from the best-fit plane describing them is 0.007 (2) \AA and the maximum deviation 0.013 (2) \AA. The dihedral angle between the benzene core plane and the plane of the carboxyl group ($\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$) is $20.6(2)^{\circ}$. The average deviation of the naphthyl group atoms from the best-fit plane describing them is 0.006 (2) \AA and the maximum deviation 0.012 (2) \AA. The dihedral angle between the benzene core plane and the naphthyl group plane is $86.3(1)^{\circ}$.

Bond distances and angles of special interest are given in Table 1. These data show that the carboxylic O atoms are ordered. As is apparent from Fig. 1, the largest principal axes of the carboxylic O atom displacement tensors are almost normal to the carboxyl group planes, as expected for ordered O atoms. The remaining intramolecular distances and angles fall within normal ranges. 11 refined ring H atoms give C H distances ranging from 0.97 (1) to 1.09 (2) \AA with a mean value of 1.01 (3) \AA, and $U_{\text {iso }}$ ranging from ~ 0.05 to $0.09 \AA^{2}$; the refined $\mathrm{O}-\mathrm{H}$ distance appears in Table 2.

Fig. 2. ORTEPII (Johnson, 1976) packing diagram of (I). Displacement ellipsoids are drawn at 50% probability for all atoms except H , for which they have been set artificially small. Hydrogen bonds are depicted by dashed lines.

The structure comprises alternating layers along a: benzoic acid groups at $\sim \frac{1}{4} \mathbf{a}$ and $\frac{3}{4} \mathbf{a}$, and naphthoyl groups at $\sim 0, \frac{1}{2} \mathbf{a}$ and \mathbf{a}. The packing is shown in Fig. 2. The closest intermolecular approaches, excluding pairs of atoms in hydrogen-bonded carboxyl groups or in the tabulated $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, are between Hl and $\mathrm{H} 13{ }^{\text {vi }}$ [symmetry code: (vi) $-\frac{1}{2}+x,-\frac{1}{2}+y, z$], and are $0.06 \AA$ less than the corresponding Bondi (1964) van der Waals radius sum. No other approach is deficient by more than $0.02 \AA$.

Experimental

The title acid was obtained as a colorless plate from a sample in the chemical collection of Dr M. S. Newman. This was cut several times to provide the experimental sample.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{3}$
$M_{r}=276.29$
Monoclinic
C2/c
$a=17.218$ (2) \AA
$b=8.121(2) \AA$
$c=19.301(1) \AA$
$\beta=91.264$ (7) ${ }^{\circ}$.
$V=2697.9(7) \AA^{3}$
$Z=8$
$D_{x}=1.360 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5S diffractometer
ω scans
Absorption correction: none
3459 measured reflections
3123 independent reflections
1936 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.56^{\circ}$
$h=0 \rightarrow 22$
$k=0 \rightarrow 10$
$l=-25 \rightarrow 25$
6 standard reflections every 150 reflections intensity decay: 4.7%

Refinement

Refinement on F^{2}
$R(F)=0.049[I>2 \sigma(I)]$
$w R\left(F^{2}\right)=0.060$
$S=1.67$
3123 reflections
239 parameters
All H atoms refined
$w=1 / \sigma^{2}\left(F^{2}\right)$
$(\Delta / \sigma)_{\max }<0.01$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=12.5-17.2^{\circ}$
$\mu=0.086 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Cut plate
$0.35 \times 0.35 \times 0.31 \mathrm{~mm}$ Colorless
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1963, 1968)
Extinction coefficient: $7.2(2) \times 10^{-7}$
Scattering factors from Stewart et al. (1965) (H) and Creagh \& McAuley (1992) (C, O)

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 7$	$1.314(2)$	$\mathrm{O} 3-\mathrm{C} 8$	$1.221(2)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.227(2)$		
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	$122.6(1)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 1$	$119.4(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 2$	$115.3(2)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 9$	$123.1(2)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 2$	$122.1(2)$		
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 17$	$22.7(2)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 6$	$67.9(2)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{1}$	$1.08(2)$	$1.61(2)$	$2.692(2)$	$176(2)$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\prime \prime}$	$1.00(2)$	$2.59(2)$	$3.468(2)$	$147(1)$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Ol}^{\prime \prime}$	$1.02(2)$	$2.69(2)$	$3.565(2)$	$144(1)$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O}^{\prime \prime}$	$1.09(2)$	$2.55(2)$	$3.592(3)$	$159(1)$
$\mathrm{C}_{1} 15-\mathrm{H} 15 \cdots \mathrm{O}^{\prime}$	$1.01(2)$	$2.55(2)$	$3.507(3)$	$158(1)$

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}-y,-z:$ (ii) $x, 1+y, z:$ (iii) $\frac{1}{2}+x, \frac{1}{2}+y, z:$ (iv) $1-x, 1-y,-z:(\mathrm{v}) 1-x,-\underset{,}{ },-z$

Scan widths were $(1.50+0.35 \tan \theta)^{\circ}$ in ω, with a background/scan time-ratio of 0.5 . The data were corrected for Lorentz and polarization effects. A linear decay correction was applied. The Laue group assignment, systematic absences and centrosymmetric intensity statistics indicated space group $C 2 / c$ (No. 15). Since refinement proceeded well, it was adopted. Fourier difference methods were used to locate the initial H -atom positions. The maximum effect of extinction was 15.4% of F_{o} for 404 . The maximum positive residual peak was located $\sim 0.7 \AA$ from Cl and $0.9 \AA$ from C8, while the maximum negative peak was located $\sim 0.3 \AA$ from C14.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: SAPI91 (Fan, 1991). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: TEXSAN and PLATON (Spek, 1990).

I thank Dr J. C. Gallucci for help of various sorts. The diffractometer was purchased with funds provided in part by an NIH grant.

[^0]
References

Bernstein, J., Davis, R. E., Shimoni. L. \& Chang. N.-L. (1995). Angen: Chem. Int. Ed. Engl. 34, 1555-1573.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Cote, M. L., Thompson, H. W. \& Lalancette, R. A. (1996). Acta Cryst. C52, 684-687.
Creagh, D. C. \& McAuley, W. J. (1992). International Tables for X-ray. Cristallographi, Vol. C. pp. 219-222. Dordrecht: Kluwer Academic Publishers.
Fan, H.-F. (1991). SAPI91. Structure Analysis Program with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7-2. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3174-3187.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1119). Services for accessing these data are described at the back of the journal.

